Properties
-
origin_name
Name of origin of this ModelVersion -
origin_id
UUID of the origin Model of this ModelVersion -
name
Name of this ModelVersion -
version
Version number of this ModelVersion -
type
Type of this ModelVersion -
framework
Framework of this ModelVersion
Methods
add_tags
add_tags(
tags: Union[Tag, list[Tag]]
)
Description
Add some tags to an object.
It can be used on Data/MultiData/Asset/MultiAsset/DatasetVersion/Dataset/Model/ModelVersion.
You can give a Tag or a list of Tag.
Examples
tag_bicycle = client.create_tag("bicycle", Target.DATA)
tag_car = client.create_tag("car", Target.DATA)
tag_truck = client.create_tag("truck", Target.DATA)
data.add_tags(tag_bicycle)
data.add_tags([tag_car, tag_truck])
get_tags
get_tags()
Description
Retrieve the tags of your model version.
Examples
tags = my_model_version.get_tags()
assert tags[0].name == "my-model-version-1"
Returns
A list of Tag objects
update
update(
labels: Optional[dict] = None, docker_image_name: Optional[str] = None,
docker_flags: Optional[list[str]] = None, thumb_object_name: Optional[str] = None,
notebook_link: Optional[str] = None, base_parameters: Optional[dict] = None,
docker_env_variables: Optional[dict] = None, framework: Union[str, Framework,
None] = None, type: Union[str, InferenceType, None] = None,
name: Optional[str] = None, description: Optional[str] = None,
docker_tag: Optional[str] = None
)
Description
Update this model version with some new infos.
Examples
model_v1.update(docker_image_name="docker.io/model1")
Arguments
-
labels (dict, optional) : Labels of this model version. Defaults to None.
-
docker_image_name (str, optional) : Docker image name of this model version. Defaults to None.
-
docker_flags (list[str], optional) : Docker flags of this model version. Defaults to None.
-
thumb_object_name (str, optional) : Thumbnail object name of this model version. Defaults to None.
-
notebook_link (str, optional) : Notebook link of this model version. Defaults to None.
-
base_parameters (dict, optional) : Base parameters of this model version. Defaults to None.
-
docker_env_variables (dict, optional) : Docker env variables of this model version. Defaults to None.
-
framework (Union[str, Framework, None], optional) : Framework of this model version (tensorflow, pytorch, etc.). Defaults to None.
-
type (Union[str, InferenceType, None], optional) : Type of this model version (classification, object_detection, segmentation). Defaults to None.
-
name (str, optional) : Name of this model version. Defaults to None.
-
description (str, optional) : Description of this model version. Defaults to None.
-
docker_tag (str, optional) : Docker tag of this model version. Defaults to None.
delete
delete()
Description
Delete model version.
Delete the model in Picsellia database
Examples
model_v1.delete()
get_context
get_context()
Description
Get ModelContext of this model
Examples
model_v1 = client.get_model(name="my-model").get_version(0)
context = model_v1.get_context()
context.get_infos()
Returns
ModelContext objects that you can use and manipulate
list_files
list_files()
Description
Get a list of ModelFile that were stored with this model
Examples
model_v1 = client.get_model(name="my-model").get_version(0)
files = model_v1.list_files()
files[0].download()
Returns
A list of ModelFile that you can use and manipulate
get_file
get_file(
name: str
)
Description
Retrieve a ModelFile that were stored with this name into this model
Examples
model_v1 = client.get_model(name="my-model").get_version(0)
file = model_v1.get_file("model-latest")
file.download()
Arguments
- name (str) : Name of the file you want to retrieve
Returns
A ModelFile that you can use and manipulate
store
store(
name: str, path: Union[str, Path], do_zip: bool = False, replace: bool = False
)
Description
Store a file into picsellia storage and attach it to this model.
Examples
model.store("model-latest", "./lg_test_file.pb")
Arguments
-
name (str) : Name of file
-
path (str or Path) : Path of file to store
-
do_zip (bool, optional) : If true, zip directory to store it. Defaults to False.
-
replace (bool, optional) : If true, if a file with given name exists, it will be replaced. Defaults to False.
Returns
A ModelFile object
update_thumbnail
update_thumbnail(
path: Union[str, Path]
)
Description
Updates the model thumbnail.
Update the model thumbnail with given file.
File size shall be less than 5Mb.
Examples
model.update_thumb("test.png")
Arguments
- path (str or Path) : Path of the thumbnail you want to push
Raises
-
FileNotFoundException : If there is no file in given path
-
InvalidQueryError : If file is too large
-
PicselliaError : If an unexpected error occurred while uploading file
deploy
deploy(
name: Optional[str] = None, target_datalake: Optional[Datalake] = None,
min_threshold: Optional[float] = None
)
Description
Create a Deployment for a model.
This method allows you to create a Deployment on Picsellia. You will then have
access to the monitoring dashboard and the model management part!
Examples
model_version = client.get_model(name="my-awesome-model").get_version(0)
deployment = model_version.deploy(name="my-awesome-deployment", min_threshold=0.5)
Arguments
-
name (str) : Name of your deployment. Defaults to a random name.
-
min_threshold (float) : Threshold of detection scores used by models when predicting. Defaults to 0.
-
target_datalake Datalake : Datalake to use when data are pushed into Picsellia.
Defaults to organization default Datalake.
Returns