Properties
-
deployment_id
UUID of Deployment where this PredictedAsset is -
data_id
UUID of Data of this PredictedAsset -
oracle_prediction_id
Oracle prediction if of this predicted asset -
object_name
Object name of this PredictedAsset -
filename
Filename of this PredictedAsset -
large
If true, this Asset file is considered large -
type
Type of this PredictedAsset -
width
Width of this PredictedAsset. -
height
Height of this PredictedAsset. -
metadata
Metadata of this Data. Can be None
Methods
reset_url
reset_url()
Description
Reset url of this object
reset_url
reset_url()
Description
Reset url property of this Asset by calling platform.
Returns
A url as str of this Asset.
get_data
get_data()
Description
Retrieve data of this asset
data = asset.get_data()
assert data.id == asset.data_id
assert data.filename == asset.filename
Returns
A Data object
delete
delete()
Description
Delete this predicted asset from its deployment
⚠️ DANGER ZONE: Be very careful here!
Remove this predicted asset
Examples
one_asset.delete()
add_review
add_review(
rectangles: Optional[list[tuple[int, int, int, int, str]]] = None,
polygons: Optional[list[tuple[list[list[int]], str]]] = None,
classifications: Optional[list[str]] = None
)
Description
Add a review to your predicted-asset.
It will then be used along the prediction for the monitoring.
⚠️ DANGER ZONE: You will not be able to change it afterward and
the monitoring metrics will not be able to be computed again with another review.
Examples
one_annotation.overwrite(rectangles=[(10, 20, 30, 40, label_cat), (50, 60, 20, 30, label_dog)])
Arguments
-
rectangles (list[tuple[int, int, int, int, str]], optional) : List of rectangles of this review. Defaults to None.
-
polygons (list[tuple[list[list[int]], str]], optional) : List of polygons of this review. Defaults to None.
-
classifications (list[str], optional) : List of classifications of this review. Defaults to None.